D I S C O V E R Y
 

Суперячейки

 

Причиной таких явлений, как гроза, ливневой дождь, шквалистое усиление ветра, являются моноячейковые и мультиячейковые кучево-дождевые облака, которые довольно часто громоздятся на небосводе в летнее время года. Моноячейка – это одно единственное кучево-дождевое облако, существующее независимо от других. Мультиячейка – это уже кластер (скопление) моноячеек, которые объединены одной наковальней. То есть когда одна ячейка затухает, то возле неё другая зарождается или же зарождение идёт одновременно. Эти комплексы могут занимать по площади от нескольких десятков до нескольких сотен тысяч км2. Последние именуются Мезомасштабными конвективными кластерами (МКК). Они способны вызывать мощные шквалы, крупный град и сильнейшие ливни. Однако ничего особенного они собой не представляют – просто скопление мощных кучево-дождевых облаков. Но есть атмосферное образование, которое продуцирует ещё более суровые погодные условия, в том числе и торнадо и называется оно суперячейка. Условия их образования и структура кардинально отличаются от обычных кучево-дождевых облаков. И эта статья как раз посвящена этим удивительным, редким и захватывающим объектам атмосферы.

 

Моноячейки и мультиячейки.

Для начала рассмотрим процессы образования обычных моноячеек. В ясный летний день Солнце сильно нагревает подстилающую поверхность. В результате, возникает термическая конвекция, которая приводит к возникновению «зародышей» будущей грозы – плоских кучевых облаков (Cu hum.), высота которых не превышает 1 км. Они обычно порождаются хаотически всплывающими объёмами прогретого воздуха – термиками в виде пузырей. В этом случае возникшее облачко продержится некоторое время (десятки минут) и в итоге растворится не перейдя в другую стадию развития. Иное дело состоит, когда всплывающий термик приобретает форму не пузыря, а непрерывной струи воздуха. При этом в местах, откуда поднялся воздух, образуется разрежение. Оно заполняется воздухом с боков. Вверху, наоборот, избыток воздуха стремится распространиться в стороны. На некотором расстоянии воздушное движение замыкается. В результате образуется конвективная ячейка. При этом Cu hum. переходит в кучевые средние или кучевые мощные облака (Cu med., Cu cong.), высота которых уже составляет до 4 км. Перейдёт кучевое плоское облако в среднее, а затем в мощное или же закончит свою эволюцию, оставшись на первой стадии зависит только от состояния атмосферы в данном месте и в данное время. Основными факторами, способствующими рост конвективных облаков являются резкое падение температуры с высотой в фоновой атмосфере, а также выделение тепла при фазовых переходах влаги (конденсация, замерзание, сублимация), для чего необходимо достаточно большое содержание водяного пара в воздухе. Сдерживающим фактором является наличие в атмосфере слоев, в которых температура слабо падает с высотой, вплоть до изотермии (температура с высотой не меняется) или инверсии (потепление с высотой). При благоприятных условиях Cu cong. превращается в кучево-дождевое Cb облако, которое и является причиной ливней, грозы и града. Но в любом случае кучево-дождевое облако возникает первоначально как Cu hum, а не спонтанно. Отличительным признаком этого облака является обледеневшая вершина, которая достигла слоя инверсии (высота Cb определяется уровнем конденсации и уровнем конвекции – соответственно нижняя и верхняя границы облака. В тропических широтах высота этих облаков может достигать 20 км и пробивать тропопаузу). Она называется наковальня и представляет собой слой плотных перистых облаков, развитых в горизонтальной плоскости. В это время облако достигло максимального развития. При этом наряду с восходящими потоками в облаке, образовываются нисходящие в результате выпадения осадков. Выпадающие осадки охлаждают окружающий воздух, он становится плотнее и начинает опускаться к поверхности (этот процесс на земле мы наблюдает как шквал) всё больше и больше блокируя восходящие потоки, которые очень необходимы для существования облака. А любой нисходящий поток губительно действует на облакогенезис. Таким образом, облако, доросшее до стадии Cb, сразу же само себе подписывает смертный приговор. Как показывают исследования, нисходящие потоки в нижней его части и в подоблачном слое вызывают особенно сильный эффект - из-под облака, образно говоря, выбивается фундамент. В результате наступает финальная стадия существования Cb – его диссипация. На этой стадии под облаком наблюдаются только нисходящие потоки, полностью заменив восходящие; осадки постепенно ослабевают и прекращаются, облако становится менее плотным, постепенно переходя в слой плотных перистых облаков. На этом его существование заканчивается. Таким образом, все стадии эволюции облако проходит примерно за час: рост облака происходит за 10 мин, стадия зрелости продолжается около 20 – 25 мин, а диссипация происходит примерно за 30 мин.

Моноячейкой называют облако, которое состоит из одной конвективной ячейки, но чаще всего (примерно в 80 % случаев) наблюдаются мультиячейки – группа конвективных ячеек в различных стадиях развития, объединённые одной наковальней. При мультиячейковой грозовой деятельности нисходящие потоки холодного воздуха «материнского» облака создают восходящие потоки, формирующие «дочерние» грозовые облака. Однако нужно помнить, что все ячейки никогда не могут находится одновременно на одной стадии развития! Время существования мультиячеек гораздо большее – порядка нескольких часов.

 

Суперячейка. Основные понятия.

Суперячейка – это очень мощная конвективная моноячейка. Процесс её образования и строение сильно отличается от обычных кучево-дождевых облаков. Поэтому это явление представляет большой интерес для учёных. Интерес состоит в том, что обычная моноячейка при определённых условиях превращается в своеобразного «монстра», который может существовать около 4 – 5 часов практически не меняясь, являясь квазистационарным и генерировать все опасные явления погоды. Диаметр суперячейки может достигать 50 км и более, а её высота часто превышает 10 км. Скорость восходящих потоков внутри суперячейки достигает 50 м/с и даже больше. В результате, часто образуется град, диаметром 10 см и более. Ниже будут рассмотрены условия образования, динамика и структура суперячейки.

 

Условия образования.


Структура суперячейки

 

Основными факторами, необходимыми для образования суперячейки являются сдвиг ветра (изменение скорости и направления ветра с высотой в слое 0 – 6 км), наличие на низких уровнях струйного течения и сильная нестабильность в атмосфере, когда наблюдается «взрывная конвекция». Первоначально облако имеет характеристики моноячейки с прямыми восходящими потоками тёплого и влажного воздуха, но за тем на некоторой высоте наблюдается сдвиг ветра и (или) струйное течение, которое начинает закручивать по спирали восходящий поток и немного его наклоняет от вертикальной оси. На первом рисунке красной тонкой стрелкой показан сдвиг ветра (струйное течение), широкой стрелкой – восходящий поток. В результате его соприкосновения со струйным течением, он начинает закручиваться по спирали в горизонтальной плоскости. Затем восходящий поток, вращаясь по спирали, постепенно из горизонтального преобразуется в более вертикальный. Это можно наблюдать на втором рисунке. В конечном итоге восходящий поток приобретает почти вертикальную ось. При этом вращение продолжается, и оно настолько мощное, что в итоге пробивает наковальню, образуя над ней купол – возвышающуюся макушку. Появление этого купола свидетельствует о мощных восходящих потоках, которые способны пробить инверсионный слой. Эта вращающаяся колонна является «сердцем» суперячейки и называется мезоциклон. Его диаметр может составлять от 2 до 10 км. Возвышающаяся макушка как раз свидетельствует о наличии мезоциклона.

Большая продолжительность жизни и стабильность суперячейки связана со следующим. Благодаря мезоциклону выпадение осадков происходит чуть в стороне от восходящего потока, а следовательно и нисходящие потоки также наблюдаются в стороне (в основном по обе стороны от мезоциклона). В таком случае оба потока (нисходящий и восходящий) сосуществуют между собой - являются друзьями: опускаясь вниз, первый вытесняет тёплый воздух вверх, а не блокирует его доступ в ячейку, тем самым ещё больше усиливая восходящий поток. А чем мощнее восходящий поток, тем сильнее и осадки, которые вызывают ещё большие нисходящие потоки, которые всё сильнее вытесняют приземный воздух вверх. И если ячейку уподобить колесу, получается, что осадки в такой ситуации, как бы, это колесо раскручивают. Именно в результате этого суперячейка способна существовать в течение многих часов, разрастаясь за это время на десятки км в ширину и длину, порождая крупный град, сильные ливни и часто торнадо. В это время у поверхности земли появляется 3 минифронта: 2 холодных в районе нисходящих потоков, и тёплый в районе восходящих (см. рис №1). То есть появляется миниатюрный циклон, «зародышем» которого как раз и является тот самый мезоциклон. Как было сказано выше, смерчи возникают не только в суперячейках, но и в обычных моно- и мультиячейках. Однако существует главное различие: в суперячейке осадки и торнадо наблюдаются одновременно, а в моно- и мультиячейках – сначала смерч, а потом осадки, причём в том районе, где наблюдался смерч. Это связано с отсутствием явного сдвига в пространстве верхней «кристаллогенной» части облака, и нижней в которую втекает теплый воздух. Кроме того, в суперячейках обычно над вершиной имеется струйное течение, которое выносит вытесненный воздух прочь от облака, в результате чего наблюдается очень вытянутая наковальня (см рис.№1), тогда как в обычной ячейке вытесненный теплым холодный воздух опускается по краям и тем самым дополнительно блокирует «питание». Поэтому смерчи в таких ячейках кратковременны, слабые, и редко бывают на стадии большей чем воронка(funnel cloud).

 

Годограф.

Проведём сравнение трёх видов штормов с помощью годографа. Годограф скорости – это кривая, которая соединяет концы векторов скорости за разные промежутки времени, отсчитанные от одной точки.

 


Годограф

 

Данный годограф показывает вертикальный сдвиг ветра для моноячейки, мультиячейки и суперячейки. Точки вдоль линии годографа представляют собой конечные точки векторов (не показаны), проведённые из точки (0,0) (пересечение оси xy), которые показывают скорость, и направление ветра на конкретной высоте (в км). Например, для годографа суперячейки, на высоте 1 км ветер юго-восточный, на 2 км высоты он усилился (вектор длиннее) и стал южным, а на большей высоте он постепенно переходит на юго-западный, становясь всё сильнее. Таким образом, чем длиннее годограф, тем сильнее сдвиг ветра. Но не только длинна, но и форма годографа очень важна, т.к. указывает на изменение направления ветра с высотой. Также изогнутый годограф указывает на присутствие на нижних уровнях струйного течения, которое увеличивает потенциал для развития шторма. Как видно из рисунка, моноячейки иеют незначительный сдвиг ветра, поэтому они не опасны, хотя если в атмосфере присутствует сильная неустойчивость, то может произойти пульсация шторма до мощного с образованием града и (или) сильных шквалов.

 

Динамика суперячеек.

Нужно отметить, что суперячейки бывают и большие и маленькие, с низкой или высокой возвышающейся макушкой и могут образовываться где угодно, но в основном в центральных штатах США – на Великих равнинах. В Европе и России они крайне редкие, и встречаются только одного вида – суперячейки типа HP. О классификации речь пойдёт ниже. Суперячейки всегда связаны со значительным сдвигом ветра и высокими значениями CAPE – показатель нестабильности. Для суперячеек предел вертикального сдвига начинается с 20 м/с в слое 0-6 км.

 

 

Мощный сдвиг ветра в слое 0-6 км вызывает высокий потенциал для развития суперячейки и мезоциклона, но не обязательно торнадо. Развитие торнадо зависит от динамической структуры шторма. Сила мезоциклона также зависит от плавучести (явление, когда отдельный объём воздуха поднимается и остаётся на некоторой высоте свободно «подвешенным»). Как правило, суперячейка, существующая в среде с присутствием струйного течения на низком уровне способна породить торнадо в большинстве случаев. Вертикальный сдвиг ветра вызывает развитие динамических процессов в шторме, которые затрагивают развитие, силу, продолжительность, и движение суперячейки. Моделирование показывает, что вращение вокруг вертикальной оси (восходящий поток) должно быть уравновешено силой барического градиента, направленной к центру вращения, вызывая понижение давления в среднем слое шторма, где вращение наибольшее. Это вертикальное колебание давления приводит к еще более сильному восходящему потоку в среднем слое ячейки, который в свою очередь вызывает большее вращение (из-за вертикального протяжения). Скорость восходящего потока увеличивается с высотой, поэтому чем больше сдвиг ветра, тем сильнее происходит вращение.

Благодаря динамическим силам, суперячейка может «всасывать» воздух и благоприятно существовать в ночное время, несмотря на уменьшение тепла и неустойчивости. Динамические процессы приводят к тому, что суперячейка начинает двигаться правее от среднего (ведущего) потока. Динамические силы, в конечном счете, могут заставить главный восходящий поток разделиться на 2 отдельных восходящих потока, то есть, каждая суперячейка может развить оба циклонических (на правой стороне) и антициклонических (на левой стороне) вращения в среднем слое. Это может разделить суперячейку на 2 отдельные ячейки, при этом одна будет двигаться вправо, а другая влево от ведущего потока. Классический пример раскалывания шторма произошел 28 мая 1996 в Индиане (США).

 

Механизм торнадо в суперячейке.

Все суперячейки производят суровые погодные условия (град, шквалы, ливни), но только 30% или меньше из них генерируют торнадо, поэтому надо попытаться различить суперячейки, генерирующие торнадо, от более «спокойных».

Мощный сдвиг в слое 0-6 км (длинный годограф) и достаточная плавучесть необходимы для образования мощного мезоциклона. Образование суперячейки в условии существенного искривления годографа в слое 0-2 км способствует развитию торнадо. Однако развитие торнадо зависит от динамической структуры шторма. Должен присутствовать сильный восходящий поток и вертикальное вращения для сильного мезоциклона и развития торнадо. Горизонтальное вихрение, вызванное вертикальным сдвигом является решающим в формировании мезоциклона.

Ниже представлена теория бароклинного вихрения, объясняющая формирование торнадо в суперячейке.

 

 

 

Строение и элементы суперячейки.

Главным элементом суперячейки, как было сказано выше, является мезоциклон, визуальным признаком которого является возвышающаяся макушка (overshuting top) над наковальней и вращающееся (но не всегда) облако-навес (wall cloud) в основании суперячейки. Это облако округлой или овальной формы показывает зону главного восходящего потока. Его диаметр обычно составляет 1 – 4 км. В редких случаях в верхней части этого облака наблюдается так называемое «облако-воротник» (collar cloud), имеющее вид кольца. От wall cloud часто в северном направлении отходит некий «отросток» - облако-хвост (tail cloud). Это облако в виде узкой и длинной полосы одним краем примыкает к облаку-навесу и тянется от него обычно от зоны выпадения осадков в северном направлении. Иногда можно наблюдать другой вид облака-хвоста – «хвост бобра» (beaver tail). Оно имеет вид относительно широкой и плоской полосы, похожей на хвост бобра, от чего и получило своё название. Оно примыкает к главному восходящему потоку и располагается примерно параллельно к тёплому фронту (ТФ) суперячейки и простирается обычно с запада на восток. Часто наблюдается одновременно облако-хвост, отходящее от облака-навеса и хвост бобра. Последний более длинный и образуется на большей высоте. Часто от облака-навеса развивается направленный вниз облачный отросток – воронкообразное облако (funnel cloud). Если эта воронка достигает поверхности земли, то в этом случае она называется торнадо. В этом случае на месте соприкосновения торнадо с землёй образуется вращающееся облако пыли и мусора (debris cloud). Раньше это образование называли каскадом. В суперячейке почти всегда существует 2 основных нисходящих потока:

1) Тыловой нисходящий поток (Rear flank downdraft – RFD). Это область оседания сухого воздуха на задней стороне мезоциклона, как бы обёртывая его вокруг, за исключением обл. притока (inflow). Визуальным признаком RFD является «чистая щель» (clear slot) – небольшая область менее плотной и более светлой облачности; указывает на нисходящий поток. Этот поток (RFD) формирует у земной поверхности тыловой холодный фронт, над которым развиваются кучевые облака в виде башен (towers), т.к. их высота значительно превышает ширину, соединённые между собой в цепочку или линию – flanking line towers. Эта линия обычно располагается на юго-западной стороне от мезоциклона. Линия кучевых облаков имеет ступенчатый характер, когда наивысшее облако (главная башня – main tower) располагается вплотную к мезоциклону, постепенно сливаясь с ним, увеличивая суперячейку в размере. В районе слияния выделяют узкую область с интенсивными осадками и градом – занавес дождя (rain curtain).

2) Передний фланг нисходящего потока (Forvard flank downdraft – FFD). Это главная область нисходящих потоков в передней части суперячейки, где выпадают самые сильные осадки на обширной территории. Эти потоки создают передний ХФ. FFD идентичен RFD, только наблюдается с противоположной стороны мезоциклона и более обширный. Как раз вдоль переднего ХФ развивается облако-полка (shelf cloud) – разновидность шквалового ворота; имеет вид горизонтального клина или плоского выступа, нижняя часть которого обычно имеет клочковатый/разорванный вид из-за сильных ветров. Наряду с двумя холодными фронтами, в суперячейке у поверхности земли существует один тёплый фронт (ТФ) – граница между областью притока тёплого воздуха и FFD, следовательно, он простирается от мезоциклона к востоку – юго-востоку от него и обычно стационарный или медленно двигается в северо-восточном направлении, переходя на некотором расстоянии в передний ХФ.

Часто в суперячейках нисходящие потоки достигают чрезвычайной мощности. В этом случае они называются downbarst («взрыв вниз»). Достигая земли, этот поток распространяется во всех направлениях, причиняя сильные разрушения. У нас это явление называется шквалом, однако его скорость всё же уступает даунбарсту. Различают микробарсты и макробарсты. Микробарст – это маленький даунбарст, распространяющийся на расстояние до 4 км от места соприкосновения с поверхностью. Продолжительность микробарстов обычно около 5 мин. Макробарсты распространяются на расстояние более 4 км и существуют гораздо дольше. Среди даунбарстов различают также сухие и влажные как микро-, так и макробарсты. Сухие сопровождаются слабыми осадками или вовсе не сопровождаются ими. Они в основном возникают в суперячейках типа LP. Влажные сопровождаются интенсивными осадками и наблюдаются соответственно в суперячейках типа HP. Скорость ветра в даунбарсте может достигать 240 км/ч. Формирование даунбарста начинается при прохождении больших капель или града через сухой воздух. При этом, град начинает таять, а капли испаряться. Этот процесс требует затрат тепла, поэтому окружающий воздух охлаждается. Плотность холодного воздуха, как известно, выше тёплого, поэтому охладившийся воздух в суперячейке резко «падает» на землю в виде даунбарста. Интенсивность этого падения, а следовательно и скорость ветра, напрямую зависят от скорости охлаждения воздуха. Визуальным признаков влажного микробарста служит такое явление, как «нога дождя» (rain foot). Это горизонтальное выпирание (выступ) около земной поверхности части полос падения осадков. То есть микробарст сносит осадки в сторону.

Наряду с нисходящими потоками в суперячейке присутствует один главный восходящий поток (updraft), расположенный между двумя нисходящими. О его присутствии свидетельствует облако-навес и зона, свободная от осадков (precipitation free base). Эта зона представляет собой тёмное и плоское основание главной башни (см. выше), которое в отличие от облака-навеса не вращается. Не смотря на это торнадо могут развиваться не только из wall cloud, но и от зоны, свободной от осадков, особенно когда она расположена на южной или юго-западной стороне от главной области выпадения осадков.

Между областью восходящих потоков и FFD нередко наблюдается просвет в облаках («чистая зона»). Этот район называется «свод» (vault). Обычно он наблюдается с северной части от облака-навеса. В районе свода часто наблюдается выпадение града и сильно повышена грозовая активность. Ещё одной особенностью суперячеек являются так называемые, полосы притока (Inflow bands). Они являются облаками нижнего яруса, устроенные параллельно воздушным потокам на нижнем уровне. Т.к. они располагаются полосами, то между ними существуют т.н. «борозды» (striations) – углубления или канавы, которые также устроены параллельно воздушным потокам. И борозды и полосы притока показывают направление воздушных потоков относительно материнского облака, а их изогнутость в виде дуг указывает на присутствие мезоциклона.

Наковальню суперячейки условно можно разделить на две части – переднюю и заднюю. Передняя часть намного большая задней и сильно вытянута по направлению движения ячейки. Больший интерес представляет задняя её часть, которая называется “Back-sheared anvil”, что дословно переводится как “наковальня со сдвигом назад». Благодаря интенсивным восходящим потокам в суперячейке, эта часть наковальни может распространяться против ветра, а скорость ветра на высоте её формирования (13-14 км), как видно из годографа, составляет более 40 м/с…

Неотъемлемой частью суперячейки являются вымеобразные облака – mammatus или mammatocumulus, которые имеют вид округлений (выпячиваний), свисающие с основания наковальни (как передней, так и задней), часто в виде полос или гряд. Эти облака могут находится в десятках километрах от мезоциклона, на краю суперячейки. Продолжительность существования Mammatus зависит от размеров капель (или ледяных кристаллов) и колеблется от нескольких минут до нескольких часов. Чем крупнее капельки и кристаллы, тем дольше существуют мамматусы, так как необходимо затратить больше энергии на их испарение. Условием для их образования является соседство влажной и неустойчиво стратифицированной воздушной массы в средней и верхней частях тропосферы над сухой воздушной массой, занимающей нижнюю часть тропосферы. В таких условиях под опускающимися кристаллами льда наковальни суперячейки возникает система небольших восходящих и нисходящих воздушных потоков на фоне общего нисходящего потока воздуха. Эти потоки и приводят к образованию характерной формы облаков. Иными словами, эти облака являются открытыми конвективными ячеечками с нисходящим потоком в центре каждой и восходящим между ними. Именно тот факт, что они образуются на нисходящих движениях воздуха делает их уникальными.

 

Механизм образования крупного града в суперячейке.

Рассмотрим причины образования крупного града в суперячейке. При перемещении суперячейки сильнейший восходящий поток образует в ней область, называемую «ниша». В этой области капли и кристаллы не успевают вырасти до размеров, при которых могли бы выпадать и выносятся потоком в наковальню. Падая вниз, они снова затягиваются внутрь восходящего потока. Такая многократная рециркуляция частичек осадков и является механизмом, способствующим образованию в суперячейках особенно больших градин (иногда более 10 см в диаметре). Для образования градины размером с шар для гольфа, она должна находиться в облаке как минимум 5 – 10 минут. За это время она испытывает более 10 миллиардов столкновений с переохлаждёнными каплями, приобретая слоистую структуру с чередующимися слоями прозрачного и мутного льда. При падении градины такого размера развивают скорость более 150 км/ч, причиняя серьёзный ущерб и травмы. Таким образом, чем сильнее восходящий поток, тем дольше градины остаются в облаке, и тем крупнее они становятся. А так как столь мощные восходящие потоки наблюдаются только в суперячейках, то и градины подобных размеров образуются только в них.

 

 

 

 

Изображение суперячейки на радаре.

На радаре Доплера, который используется в США для наблюдения за опасными явлениями погоды, классическая суперячейка имеет вид гигантской запятой или «крюка», поэтому её отражение на радаре называют «Hook echo» - эхо в виде крючка (вид сверху). Правильнее сказать, что крючок – это элемент суперячейки, указывающий на присутствие мощного мезоциклона и, следовательно, торнадо. На данном изображении зона, свободная от радиоэхо (вогнутая часть) соответствует зоне мощного восходящего потока и поэтому не прослежуется выпадение осадков. Район, окрашенный в красный цвет соответствует сильному дождю, граду и торнадо. Поэтому появление на радаре крючкообразного эхо свидетельствует о высокой вероятности формирования торнадо. Данное изображение было получено 3 мая 1999 года в Оклахоме. Эта суперячейка породила торнадо F5, которое обрушилось на Оклахома-Сити.

Но далеко не всегда в суперячейках эхо крючка имеет столь чётких вид. В южных штатах чаще всего встречаются суперячейки типа HP, не имеющие отчётливой формы крючка. Вместо этого область, соответствующая восходящим потокам и мезоциклона в ней имеет форму боба (фасолины), т.к. осадки наблюдаются и под восходящими потоками.

Если мы разрежем на радаре суперячейку по линии АВ, то на полученном вертикальном профиле мы увидим ещё одну особенность развитой суперячейки – ограниченная область слабого радиоэхо (bounded weak echo region – BWER). Это особенность радиоэхо, при котором наблюдается его частичное или полное отсутствие в среднем и нижнем слое атмосферы (WER) и присутствие в верхнем. Эта особенность связана с интенсивным восходящим потоком и почти всегда находится в области притока. Формирование BWER объясняется тем, что восходящий поток настолько мощный, что выносит частицы (гидрометеоры) в верхние слои, прежде, чем они увеличатся до таких размеров, когда станут видимыми на радаре. BWER обычно прослежуется на высотах от 3 до 10 км и имеет несколько км в поперечнике. Выше области BWER находится зона интенсивного радиоэха, называемая «Нависание» (Overhang), которая как-бы нависает над «пустой» зоной. Обнаружение BWER очень важно, поскольку его наличие свидетельствует о суровых явлениях погоды.

На схеме представлена эволюция HP суперячейки (А) в bow echo(D). На рис. «А» изображена типичная ячейка HP. Затем у неё начинает развиваться задний приток («В»), который со временем усиливается («С») и выгибает ячейку в обратном направлении в виде bow echo («D»)

Классические и суперячейки типа HP при определённых условиях на радаре могут принимать вид «лука» (оружие) Bow echo. Это происходит, когда RFD или задняя струя воздуха, усиливаясь, заставляет суперячейку выгибаться в обратном направлении. В результате, она принимает вид лука на радаре и начинает перемещаться в другом направлении, формируя разрушительные ветры на своём пути. В этом случае, мощные торнадо, которые присутствуют в области крюка, разрушаются. Иногда на радаре можно увидеть ещё один элемент суперячейки – V-выемка (V-notch). Он имеет вид V-образной выемки в передней части суперячейки. Это явление свидетельствует о расхождении потоков вокруг мощного восходящего потока. Также иногда на радаре можно увидеть «выемку притока» (Inflow notch), в виде вогнутого радиоэхо в области притока (тёплый фронт) суперячейки и обычно совпадают с правым сектором классической суперячейки, а в суперячейке типа HP располагается обычно с восточной части.

 

Классификация суперячеек.

Суперячейки обычно классифицируют на 3 вида. Но не все суперячейки чётко соответствуют конкретному виду и часто переходят с одного вида в другой в процессе своей эволюции. Все типы ячеек порождают суровые погодные условия.

Классическая суперячейка (Classic supercell) - Эта суперячейка, представленная на рисунке №1. То есть это идеальная суперячейка, в которой присутствуют почти все вышеперечисленные элементы как на радаре, так и визуальные. Показатели неустойчивости для этого типа составляют: САРЕ: 1500 – 3500 Дж/кг, Li от -4 до -10. Но в природе такие ячейки встречаются довольно редко, чаще наблюдаются два остальных типа.

Суперячейка типа LP (Low Precipitation). Этот класс суперячеек имеет небольшую область со слабыми осадками (дождь, град), отделённую от восходящего потока. Этот тип может быть легко опознаваемым за счёт «скульптурных» облачных борозд в основании восходящего потока и иногда имеет вид «страдающей голодом» по сравнению с классической суперячейкой. Это происходит потому, что они формируются вдоль т.н. сухих линий (когда у пов-ти наблюдается тёплый и влажный воздух, который вклинивается, подобно холодному фронту, под более жаркий и сухой воздух, т.к. последний менее плотный), имея мало доступной влаги для своего развития, несмотря на сильный сдвиг ветра. Такие ячейки обычно быстро разрушаются не переходя в другие типы. Как правило, они генерируют слабые торнадо и град, размером менее 1 дюйма. Из-за отсутствия сильных осадков, этот тип ячеек имеет слабое отражение на радаре без чёткого hook echo, несмотря на то, что в это время на самом деле наблюдается торнадо. Грозовая активность такой ячейки значительно ниже по сравнению с другими типами и молнии преимущественно внутриоблачные (IC), а не между облаком и землёй (CG). Эти суперячейки формируются при САРЕ, равному 500 – 3500 Дж/кг и Li: -2 – (-8). Такие ячейки встречаются преимущественно в центральных штатах США в весенние и летние месяцы. Также они наблюдались в Австралии.

Суперячейка типа HP (High Precipitation). Этот тип суперячеек имеет гораздо более сильные осадки, чем остальные виды, которые могут полностью окружать мезоциклон. Такая ячейка особо опасна, поскольку может содержать мощный торнадо, который визуально скрыт за стеной осадков. HP суперячейки часто вызывают наводнения и сильные даунбарсты, но по сравнению с другими типами имеют меньшую вероятность формирования крупного града. Было отмечено, что эти суперячейки генерируют большее колличество IC и CG разрядов, чем остальные типы. Показатель САРЕ для этих суперячеек составляет 2000 – 7000 Дж/кг и более, а Li должен быть ниже -6. Перемещаются такие ячейки относительно медленно.

Игорь Кибальчич (г. Одесса)



29-08-2011 | Просмотров: 20999
 
Комментарии Комментировать
 
Комментировать